Numerical Simulation of Particle and Energy Fluxes to Material Surfaces in Tokamak

M.V. Umansky, T.D. Rognlien, X.Q. Xu

Lawrence Livermore National Laboratory

Our motivation is developing a physicsbased model of plasma fluxes

- Plasma turbulence can drive large radial fluxes of particles and energy
- Understanding edge-plasma turbulence is critical for predicting PFC lifetime
- Numerical simulation of edge-plasma turbulence gives quantitative assessment of such fluxes

BOUT is a numerical tool for direct simulation of edge plasma turbulence

- Reduced Braginskii equations for N_i , T_e , T_i , $V_{\parallel e}$, $V_{\parallel i}$, and \square
- Real geometry with X-point
- Parallel implementation
- Has demonstrated encouraging similarity to some exptl. data

^{*} Originally developed at LLNL by

BOUT simulation shows convection of plasma "blobs" to the outer wall

We have set up a BOUT case for NSTX (work in progress)

- EFIT-based geometry for NSTX shot 109033 (pre-lithium)
- Plasma profiles are fit to radial profiles of T_e , N_i from Thomson data

BOUT fluctuations from NSTX case appear to have reasonable spatial and temporal scales

Results of simulations:

- $\square N_i \sim 10\%$
- $\prod \Gamma_{ei} \sim 3 \text{ eV}$
- **□~10 V**
- $L_{\square} \sim 2 \text{ cm}$
- $f \sim 10^5 \text{ s}^{-1}$

Gas-puff imaging data (S.Zweben)

Summary

• We are developing capability of simulating turbulent edge-plasma fluxes

• We have preliminary results of BOUT simulations of NSTX (pre-lithium)

